New Graph Model for Consistent Superstring Problems

Kunsoo Park
Seoul National University

Joint work with J.C. Na, S.H. Cho, S. Choi, J.W. Kim and J.S. Sim
Outline

- Introduction
- Problem Definition
- New Graph Model
- Algorithms
- Conclusion
Common Superstring

- **Input:** string set \(P = \{x_1, x_2, \ldots, x_p\} \) over \(\Sigma \)

- **Common superstring of** \(P \)
 - String that includes every string \(x_i \) as a substring
 - Ex) \(P = \{ab, bb\} \) over \(\Sigma = \{a, b\} \)
 - Common superstrings of \(P \)
 \[
 \{abb, aabb, abba, abbb, babb, bbab, baabb, \ldots\}
 \]
Common Non-Superstring

- **Input**: string set \(N = \{y_1, y_2, ..., y_n\} \) over \(\Sigma \)

- **Common non-superstring (CNSS) of** \(N \)
 - String that does not include any string \(y_i \) as a substring
 - Ex) \(N = \{aaa, aba, bba, bbb\} \) over \(\Sigma = \{a, b\} \)
 - Common non-superstrings of \(N \)
 \[
 \{\lambda, a, b, aa, ab, ba, bb, aab, abb, baa, bab, aabb, baab, babb, baabb\}
 \]
Consistent Superstring

- **Input:** Positive string set $P = \{x_1, x_2, \ldots, x_p\}$ and negative string set $N = \{y_1, y_2, \ldots, y_n\}$ over Σ

- **Consistent superstring (CSS)** of P and N
 - String that is both a common superstring of P and a common non-superstring of N
Example of Consistent Superstrings

$P = \{ab, bb\}$, $N = \{aaa, aba, bba, bbb\}$ over $\Sigma = \{a, b\}$

The set of common superstrings of P: $\{aab, aabb, abba, abbb, babb, bbab, baabb, \ldots\}$

The set of common non-superstrings of N: $\{\lambda, a, b, aa, ab, ba, bb, aab, abb, baa, bab, aabb, baab, babb, baabb\}$

The set of consistent superstrings of P and N: $\{aab, aabb, babb, baabb\}$
CSS Problems

Input: positive string set \(P = \{x_1, x_2, \ldots, x_p\} \) and negative string set \(N = \{y_1, y_2, \ldots, y_n\} \) over \(\Sigma \)

1. **Shortest Consistent Superstring (SCSS) Problem**

 Output: If \(CSS = \emptyset \), 'No SCSS exists.'

 otherwise, an SCSS of \(P \) and \(N \)

2. **Longest Consistent Superstring (LCSS) Problem**

 Output: If \(CSS = \emptyset \) or an arbitrarily long CSS can be made,

 'No LCSS exists.'

 otherwise, an LCSS of \(P \) and \(N \)
Assumptions

- \(P = \{x_1, x_2, ..., x_p\} \) and \(N = \{y_1, y_2, ..., y_n\} \)

1) For all \(x_i \) and \(x_j (i \neq j) \), \(x_i \) is not a substring of \(x_j \). (If \(x_i \) is a substring of \(x_j \), then any superstring of \(x_j \) is a superstring of \(x_i \). Hence, we can remove \(x_i \) from \(P \).)

2) For all \(y_i \) and \(y_j (i \neq j) \), \(y_i \) is not a substring of \(y_j \). (Otherwise, we can remove \(y_j \) from \(N \).)

3) For all \(x_i \) and \(y_j \), \(y_j \) is not a substring of \(x_i \). (Otherwise, no CSS exists.)

4) For all \(x_i \) and \(y_j \), \(x_i \) is not a substring of \(y_j \). (inclusion-free)
Previous Work

- **Jiang-Li (1993)** introduced the notion of CSS in the context of learning strings.

- **Jiang-Timkovsky (1995)**
 - Used a graph model based only on the strings in \(N \)
 - Assumed non-trivial conditions
 - Proposed polynomial time algorithms for finding SCSS and LCSS when \(|P|\) is bounded by a constant
Contributions

- **New graph model**
 - Based on the Aho-Corasick automaton using all the strings in P and N
 - Does not assume non-trivial conditions
 - Is more intuitive and leads to simpler algorithms than Jiang-Timkovsky’s

- **Improved algorithms for SCSS and LCSS problems**
 - Our algorithms solve the CSS problems for more cases and/or more efficiently.
Our graph model is related to Aho-Corasick (AC) automaton for multiple pattern matching.

The AC automaton consists of vertices (states) and three functions (transitions): goto function, failure function, output function.

The AC automaton has its DFA version.
AC Automaton for \{aa, aba, abba, bb\}

- Goto function
- Failure function
- Output function

\[
Q(aa) = \{v3\} \\
Q(abba) = \{v8\} \\
Q(aba) = \{v6\} \\
Q(bb) = \{v5, v7\}
\]
DFA Version of AC Automaton

\[Q(aa) = \{v3\} \]
\[Q(abba) = \{v8\} \]
\[Q(aba) = \{v6\} \]
\[Q(bb) = \{v5, v7\} \]
AC automaton accepts all pattern strings

Finding all occurrences of pattern strings in a text string.

text string: \textit{baaabba}
AC Automaton

AC automaton accepts all pattern strings

Finding all occurrences of pattern strings in a text string.

text string: \textit{baabba}
AC automaton accepts all pattern strings

Finding all occurrences of pattern strings in a text string.

text string: \texttt{baabba}
AC Automaton

AC automaton accepts all pattern strings

Finding all occurrences of pattern strings in a text string.

text sting: baab bba
AC Automaton

AC automaton accepts all pattern strings

Finding all occurrences of pattern strings in a text string.

Text string: \textcolor{red}{baabba}
AC Automaton

AC automaton accepts all pattern strings

Finding all occurrences of pattern strings in a text string.

text string: \textcolor{red}{baabba}

\textcolor{red}{v0} \rightarrow \textcolor{red}{v1} \rightarrow \textcolor{red}{v3} \rightarrow \textcolor{red}{v6} \rightarrow \textcolor{red}{v7} \rightarrow \textcolor{red}{v8}
Our Graph Model

\[P = \{aba, bb\}, \ N = \{aa, abba\} \]

- **Build AC automaton for** \(P \cup N \)

\[Q(aa) = \{v3\} \]
\[Q(abba) = \{v8\} \]
\[Q(aba) = \{v6\} \]
\[Q(bb) = \{v5, v7\} \]
Our Graph Model

Remove all negative output states

\[P = \{aba, bb\}, N = \{aa, abba\} \]

\[Q(aa) = \{v3\} \]

\[Q(abba) = \{v8\} \]
We call this graph G_{CSS}

$P = \{aba, bb\}, N = \{aa, abba\}$

$Q(aba) = \{v6\}$

$Q(bb) = \{v5, v7\}$
\(P = \{aba, bb\}, N = \{aa, abba\} \)

\(\lambda\text{-path}: \) a path from \(v0 \)

\(\lambda\text{-path}(\alpha): \) a path from \(v0 \) representing string \(\alpha \)

\(\alpha \) is a CNSS of \(N \) \(\Leftrightarrow \)
\(\lambda\text{-path}(\alpha) \) exists in \(\text{GCSS} \)

ex) \(abbb \) is a common non-superstring of \(N \)

longest CNSS of \(N \) exists \(\Leftrightarrow \) \(\text{GCSS} \) is acyclic
Q-path: a λ-path which passes at least one vertex in $Q(x_i)$ for every $x_i \in P$

α is a CSS of P and N \Leftrightarrow λ-path(α) that is a Q-path exists in GCSS

ex) $ababb$ is a consistent superstring of P and N

$Q(aba) = \{v6\}$

$Q(bb) = \{v5, v7\}$
Algorithm for CSS

1. Construct G_{CSS}.
2. Find shortest (longest) Q-path in G_{CSS}.
3. Compute SCSS (LCSS) if shortest (longest) Q-path is found in step 2.
\(P \cup N \) is inclusion-free

- \(|Q(x_i)| = 1\) for every positive string \(x_i \)
- Case \(G_{CSS} \) is acyclic
- If a Q-path exists, q-vertices must be in a path.
- Such a Q-path can be found by depth-first search (topological sort).

\[
\begin{align*}
v_0 & \rightarrow u_1 & u_2 & \rightarrow ur
\end{align*}
\]
$P \cup N$ is inclusion-free

- Case G_{CSS} is cyclic
- Build G_{QS}:
 - vertices: v_0 and all q-vertices of G_{CSS}
 - Edge (u, v) is defined if there is a path from u to v in G_{CSS} and its weight is the length of shortest path from u to v in G_{CSS}
$P \cup N$ is inclusion-free

- Case G_{CSS} is cyclic
- Shortest Q-path in G_{CSS} is shortest path A_s in G_{QS} that starts at v_0 and passes over all vertices (SCSS is reduced to TSP)
- If G_{QS} is acyclic, A_s must pass over all vertices of G_{QS} in topological order
$P \cup N$ is not inclusion-free

- Build G_{QS} from G_{CSS}
- Shortest Q-path in G_{CSS} is shortest path in G_{QS} that starts at v_0 and passes over at least one vertex in every $Q(x_i)$ (SCSS is reduced to Generalized TSP)

$ababb$ is SCSS
Shortest CSS

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>Cases</th>
<th>LCNSS of N exists</th>
<th>No LCNSS of N exists</th>
<th>Algorithms</th>
<th>Cases</th>
<th>LCNSS of N exists</th>
<th>No LCNSS of N exists</th>
</tr>
</thead>
<tbody>
<tr>
<td>JT95</td>
<td>IF & final closure</td>
<td>$(O(P + N)^3)$</td>
<td>$(O(P + N)^5 + k^2 P^2)$</td>
<td>JT95</td>
<td>IF & final closure</td>
<td>$(O(P + N)^3)$</td>
<td>$(O(P + N)^5 + k^2 P^2)$</td>
</tr>
<tr>
<td>JT95</td>
<td>IF & final closure</td>
<td>$(O(P + N)^3)$</td>
<td>$(O(P + N)^5 + k^2 P^2)$</td>
<td>JT95</td>
<td>IF & final closure</td>
<td>$(O(P + N)^3)$</td>
<td>$(O(P + N)^5 + k^2 P^2)$</td>
</tr>
</tbody>
</table>

- $O(P)$ is required since $O(P + N)$ is the input size.
- k is the number of all q-vertices.
- Even though $P \cup N$ is not inclusion-free, $|Q(x_i)|$ can be 1 for every positive string x_i. In this case (Q1) we use the algorithm for case $P \cup N$ is inclusion-free.
Algorithm for LCSS

1. Construct G_{CSS}.
2. Find longest Q-path in G_{CSS}.
3. Compute LCSS if longest Q-path is found in step 2.
$P \cup N$ is inclusion-free

- Case G_{CSS} is acyclic: similar to SCSS
- Case G_{CSS} is cyclic
- Build G_{QL}:
 - vertices: v_0, all q-vertices of G_{CSS}, and v_f
 - Edge (u, v) for $u, v \neq v_f$ is defined if there is a path from u to v in G_{CSS} and its weight is -1 multiplied by the length of longest path from u to v in G_{CSS}
 - Edge (u, v_f) is always defined and its weight is -1 multiplied by the length of longest path from u to any vertex in G_{CSS}
\(P \cup N \) is inclusion-free

- Longest Q-path in \(G_{CSS} \) is shortest path in \(G_{QL} \) that starts at \(v_0 \) and passes over all vertices. (\(G_{QL} \) is acyclic or not)

(a) \(G_{CSS} \) and (b) \(G_{QL} \) for \(P = \{bba, bba\} \) and \(N = \{ab, bbb\} \)

Arbitrarily long CSS bbaaaaa ...
$P \cup N$ is not inclusion-free

- Build G_{QL} from G_{CSS}
- Longest Q-path in G_{CSS} is shortest path in G_{QL} that starts at v_0, and passes over at least one vertex in every $Q(x_i)$, and ends at v_f (LCSS is reduced to Generalized TSP)
Longest CSS

- \(k \) is the number of all q-vertices.
Conclusion

- Simple and intuitive graph model for CSS problems based on Aho-Corasick automaton
- Q-paths have a one-to-one correspondence with CSSs.
- Leads to improved algorithms for SCSS and LCSS problems.
Thank You